<table>
<thead>
<tr>
<th>Time</th>
<th>Day 1 September 7th</th>
<th>Time</th>
<th>Day 2 September 8th</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30-9:00</td>
<td>Registration & Introductions</td>
<td>8:30-9:25</td>
<td>8. SHM Sensing Technologies I (Todd)</td>
</tr>
</tbody>
</table>
| 9:00-9:55 | 1. Introduction (Farrar)
- Course overview
- Definition of Damage and SHM
- Motivation for SHM, (NDE vs SHM)
- Statistical pattern recognition paradigm
- Historical overview: aerospace /civil/mechanical application | 9:25-10:20 | 9. SHM Sensing Technologies II (Flynn)
- Piezoelectric materials
- Commercial transducers/actuators
- Custom transducers/actuators
- Design consideration
- Instrumentation techniques |
| 9:55-10:20 | 2. Operational Evaluation (Farrar)
- Economic/Life-safety justification for SHM
- Defining the damage to be detected
- Constraints on the SHM process
- Case Study | 10:20-10:40 | Coffee Break |
| 10:20-10:40 | Coffee Break | 10:20-10:40 | Coffee Break |
| 10:40-11:45 | 3. Review of NDE Methods (Todd)
- Ultrasound
- Thermography
- Eddy Current
- Radiography
- Limitations | 10:40-11:45 | 10. SHM Sensing Technologies III (Todd)
- Laser-based non-contact measurements
- Video-based non-contact measurements
- Robotic devices used for SHM sensing
- Specialty sensors developed for SHM (comparative vacuum monitoring, pressurized aircraft tubing, HERT, Underwater system)
- Emerging sensing and data visualization hardware |
| 11:45-12:45 | 4. Sensing & Data Acquisition (Todd)
- Sensor and sensor system overview
- Sensor performance metrics
- Signal conditioning issues
- Telemetry and power
- Embedded systems
- Sensor network paradigms | 11:45-12:45 | 11. Introduction to SHM Features (Farrar)
- Define ‘features’ in the context of SHM
- Features in the context of detection theory
- Sufficient statistic
- Feature types
- Examples (frequencies, mode shapes) |
| 12:45-13:30 | Lunch | 12:45-13:20 | Lunch |
| 13:45-14:45 | 5. Signal Processing (Flynn)
- Conditioning signals
- Analyzing Signals
- Time, Frequency &Time-frequency Methods
- Correlation methods
- Input-output methods | 13:45-14:45 | 12. Ultrasonic Methods (Flynn)
- Acoustic emissions
- Impedance method
- Sensor self-diagnostics
- Guides waves
- Nonlinear acoustics
- Integration with other SHM technologies |
| 14:45-15:40 | 6. Basic Statistics (Farrar)
- Statistical moments/distributions
- Density estimation
- Confidence limits
- Central limit theorem
- Principal component analysis | 14:45-15:40 | 13. Advanced Features (Todd)
- Nonlinear response concepts
- Waveform comparisons (nonlinear)
- Nonlinear time series modeling
- Residual errors
- Chaotic interrogation methods |
| 15:40-16:00 | Coffee Break | 15:40-16:00 | Coffee Break |
| 16:00-17:00 | 7. SHMTools Demonstration: Signal Analysis (Flynn)
- Using SHMTools & mFUSE
- Function & process assembly
- Data import
- Statistical analysis
- Signal processing | 16:00-17:00 | 14. SHMTools Demonstration (Flynn)
- Feature extraction with time series models
- Rotating machinery example
- Guided wave example |
<table>
<thead>
<tr>
<th>Time</th>
<th>Day 3 September 9th</th>
</tr>
</thead>
</table>
- Motivation for statistical decision analysis
- Define supervised and unsupervised learning methods in the context of SHM
- Cluster analysis
- Outlier (Novelty) detection
- Statistical process control |
- Group classification & regression
- Neural networks
- Radial basis function
- Support vector machines
- Automated feature selection |
| 10:20-10:40| **Coffee Break** |
| 10:40-11:45| **17. Data Normalization (Farrar)**
- Environmental/operational effects on SHM
- Parametric modeling environmental effects
- Look-up table technique
- Machine learning techniques
- SHM system design for normalization |
| 11:45-12:45| **18. SHM System Design: Detection and Location (Todd)**
- Bayesian risk framework
- Classical detection theory
- Detector design
- Detection/location examples |
| 12:45-13:45| **Lunch** |
| 13:45-14:45| **19. Value of Information in SHM (Thöns)**
- Scenario definition for value of information analyses
- Structural system and structural health information modelling
- Example for value of information analysis |
| 14:45-15:40| **20. SHMTools Demonstration Detection & Classification (Flynn)**
- Outlier detection
- Data normalization
- Supervised learning example |
| 15:40-16:00| **Break** |
| 16:00-17:00| **21. Fundamental Axioms & Closing Remarks (Farrar)**
- Recap the statistical pattern recognition paradigm
- Fundamental axioms of SHM
- Other sources of information
- Course survey |