STRUCTURAL HEALTH MONITORING USING STATISTICAL PATTERN RECOGNITION

Virtual Course (offered over 5 days) Times Shown are Central European Time

Time	June 27	Time	June 28	Time	June 29
14:00-14:30	Instructor and Participant Introductions				
14:30-15:30	 Introduction Motivation for SHM, (NDE vs SHM) Statistical pattern recognition paradigm Historical overview: aerospace /civil/mechanical applications 	14:00-15:00	 5. Signal Processing Conditioning signals Analyzing Signals Time, Frequency &Time-frequency Methods Correlation methods Input-output methods 	14:00-15:00	 9. SHM Sensing Technologies II Piezoelectric materials Commercial transducers/actuators Custom transducers/actuators Design consideration Instrumentation techniques
15:30-16:30	2. Review of NDE Methods - Ultrasound - Acoustic Emission - Thermography - Eddy Current - Radiography - Limitations	15:00-16:00	 6. Basic Statistics Statistical moments/distributions Density estimation Confidence limits Central limit theorem Principal component analysis 	15:00-16:00	 10. SHM Sensing Technologies III Laser-based measurements Video-based measurements Robotic devices for SHM sensing Specialty sensors developed for SHM (comparative vacuum monitoring, pressurized aircraft tubing, HERT, Underwater system) Emerging sensing and data visualization hardware
16:30-16:45	Break	16:00-16:15	Break	16:00-16:15	Break
16:45-17:15	 3. Operation Evaluation Economic/Life safety Justification Definition of Damage Constraints Case studies 	16:15-17:15	 7. SHMTools Demonstration: Signal Analysis Using SHMTools & mFUSE Function & process assembly Data import Statistical analysis Signal processing 	16:15-17:15	 11. Damage Sensitive Features I Define "features' in the context of SHM Features in the context of detection theory Feature types Examples (frequencies, mode shapes)
17:15-18:15	 4. SHM Sensing & Data Acquisition Overview Sensor network components Sensor performance metrics Signal conditioning issues Sensor network paradigms Excitation 	17:15-18:15	 8. SHM Sensing Technologies I Excitation methods Conventional force/pressure sensing Conventional strain sensing Conventional acceleration sensing Acoustic emission sensing Fiber optic sensing 	17:15-18:15	12. Ultrasonic Methods - Acoustic emissions - Impedance method - Sensor self-diagnostics - Guides waves - Nonlinear acoustics - Integration with other technologies

STRUCTURAL HEALTH MONITORING USING STATISTICAL PATTERN RECOGNITION

Virtual Course (offered over 5 days), Times Shown are Central European Time

Time	June 30	Time	July 1
14:00-15:00	 13. Damage-Sensitive Features II Nonlinear response concepts Waveform comparisons (nonlinear) Nonlinear time series modeling Residual errors Chaotic interrogation methods 	14:00-15:00	17. Data Normalization -Environmental/operational effects on SHM -Parametric modeling environmental effects -Look-up table technique -Machine learning techniques -SHM system design for normalization
15:00-16:00	14. SHMTools Demonstration - Feature extraction with time seriesmodels- Rotating machinery example- Guided wave example	15:00-16:00	 18. SHM System Design I Bayesian risk framework Classical detection theory Detector design Detection/location examples
16:00-16:15	Break	16:00-16:15	Break
16:15-17:15	 15. Statistical Inference and Unsupervised Learning Motivation for statistical decision analysis Define supervised and unsupervised learning methods in the context of SHM Cluster analysis Outlier (Novelty) detection Statistical process control 	16:15-17:15	 19. SHM System Design II Probability of detection Design examples Robustness assessment Comparative study
17:15-18:15	 16. Supervised Learning Group classification & regression Neural networks Radial basis function Support vector machines Automated feature selection 	17:15-18:15	 20. SHMTools Demonstration Detection & Classification Outlier detection Data normalization Supervised learning example
		18:15-18:30	21. Closing Remarks - Recap the pattern recognition paradigm - Fundamental axioms of SHM - Other sources of information - Course survey