STRUCTURAL HEALTH MONITORING USING STATISTICAL PATTERN RECOGNITION Palermo, Sicily, July 2 - 4, 2020

Time	Day 1	Time	Day 2
0.00.000			
8:30-9:00 9:00-9:55	Registration & Introductions 1. Introduction to Structural Health Monitoring (Farrar) - Course overview - Definition of Damage and SHM - Motivation for SHM, (NDE vs SHM) - Statistical pattern recognition paradigm - Historical overview: aerospace /civil/mechanical application	8:30-9:25	8. SHM Sensing Technologies I (Todd) - Excitation methods - Conventional force/pressure sensing - Conventional strain sensing - Conventional acceleration sensing - Acoustic emission sensing - Fiber optic sensing
9:55-10:20	2. Operational Evaluation for SHM (Farrar) - Economic/Life-safety justification for SHM - Defining the damage to be detected - Constraints on the SHM process - Case Study	9:25-10:20	9. SHM Sensing Technologies II (Flynn) - Piezoelectric materials - Commercial transducers/actuators - Custom transducers/actuators - Design consideration - Instrumentation techniques
10:20-10:40	Coffee Break	10:20-10:40	Coffee Break
10:40-11:45	3. Review of NDE Methods (Todd) - Ultrasound - Thermography - Eddy Current - Radiography - Limitations	10:40-11:45	10. SHM Sensing Technologies III (Todd) Laser-based non-contact measurements Video-based non-contact measurements Robotic devices used for SHM sensing Specialty sensors developed for SHM (comparative vacuum monitoring, pressurized aircraft tubing, HERT, Underwater system) Emerging sensing and data visualization hardware
11:45-12:45	4. SHM Sensing & Data Acquisition Overview (Todd) - Sensor and sensor system overview - Sensor performance metrics - Signal conditioning issues - Telemetry and power - Embedded systems - Sensor network paradigms	11:45-12:45	11. Damage-Sensitive Features I (Farrar) - Define "features' in the context of SHM - Features in the context of detection theory - Feature types - Examples (frequencies, mode shapes)
12:45-13:45	Lunch	12:45-13:20	Lunch
13:45-14:45	5. Signal Processing for SHM (Flynn) - Conditioning signals - Analyzing Signals - Time, Frequency &Time-frequency Methods - Correlation methods - Input-output methods	13:45-14:45	12. Ultrasonic Methods for SHM (Flynn) - Acoustic emissions - Impedance method - Sensor self-diagnostics - Guides waves - Nonlinear acoustics -Integration with other SHM technologies
14:45-15:40	6. Basic Statistics for SHM (Farrar) - Statistical moments/distributions - Density estimation - Confidence limits - Central limit theorem - Principal component analysis	14:45-15:40	13. Damage-Sensitive Features II (Todd) - Nonlinear response concepts - Waveform comparisons (nonlinear) - Nonlinear time series modeling - Residual errors - Chaotic interrogation methods
15:40-16:00	Coffee Break	15:40-16:00	Coffee Break
16:00-17:00	7. SHMTools Demonstration: Signal Analysis (Flynn) - Using SHMTools & mFUSE - Function & process assembly	16:00-17:00	14. SHMTools Demonstration (Flynn) - Feature extraction with time series models - Rotating machinery example - Guided wave example

- Data import - Statistical analysis	
- Signal processing	

Time	Day 3
8:30-9:25	15. Unsupervised Learning for SHM
0.30-9.23	(Farrar)
	- Motivation for statistical decision analysis
	- Define supervised and unsupervised
	learning methods in the context of SHM
	- Cluster analysis
	- Outlier (Novelty) detection
	- Statistical process control
9:25-10:20	16. Supervised Learning for SHM
	(Todd)
	- Group classification & regression
	- Neural networks
	- Radial basis function
	- Support vector machines - Automated feature selection
10:20-10:40	Coffee Break
10:40-11:45	17. Data Normalization for SHM
10.40-11.43	(Farrar)
	-Environmental/operational effects on SHM
	-Parametric modeling environmental effects
	-Look-up table technique
	-Machine learning techniques
	-SHM system design for normalization
11:45-12:45	18. SHM Design I: Detection and
	Localization
	- Bayesian risk framework
	- Classical detection theory
	- Detector design
40-45-40-45	- Detection/location examples
12:45-13:45	Lunch
13:45-14:45	19. SHM Design II: Optimization and
	Robustness
	- SHM system design: Bayes Risk
	- SHM system design - Information Gap analysis for SHM
	robustness
14:45-15:40	20. SHMTools Demonstration
	Detection & Classification (Flynn)
	- Outlier detection
	- Data normalization
	- Supervised learning example
15:40-16:00	Break
16:00-17:00	21. SHM Fundamental Axioms &
	Closing Remarks (Farrar)
	- Recap the statistical pattern recognition
	paradigm
	- Fundamental axioms of SHM
	- Other sources of information
	- Course survey